skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mould, Jeremy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the potential of using a sample of very high-redshift (2 ≲z≲ 6) (VHZ) Type Ia supernovae (SNe Ia) attainable by JWST on constraining cosmological parameters. At such high redshifts, the age of the universe is young enough that the VHZ SN Ia sample comprises the very first SNe Ia of the universe, with progenitors among the very first generation of low-mass stars that the universe has made. We show that the VHZ SNe Ia can be used to disentangle systematic effects due to the luminosity distance evolution with redshifts intrinsic to SN Ia standardization. Assuming that the systematic evolution can be described by a linear or logarithmic formula, we found that the coefficients of this dependence can be determined accurately and decoupled from cosmological models. Systematic evolution as large as 0.15 mag and 0.45 mag out toz= 5 can be robustly separated from popular cosmological models for linear and logarithmic evolution, respectively. The VHZ SNe Ia will lay the foundation for quantifying the systematic redshift evolution of SN Ia luminosity distance scales. When combined with SN Ia surveys at comparatively lower redshifts, the VHZ SNe Ia allow for the precise measurement of the history of the expansion of the universe fromz∼ 0 to the epoch approaching reionization. 
    more » « less
  2. null (Ed.)
  3. Ellis, Simon C.; d'Orgeville, Céline (Ed.)
    Many areas of astronomical research rely on deep blue wide-field imaging. Mauna Kea enjoys the very best UV transparency from the ground and the Keck telescopes with 10 meter f/1.75 primaries are well suited to a prime focus camera with a large angular field. Swinburne University leads a proposal to provide a camera (KWFI, for Keck Wide Field Imager) that is optimized in the UV but works well to 1μm wavelength. Keck has interchangeable top end modules, of which one is now unused and easily capable of housing the required corrector lens and detector enclosure. This paper concentrates on details of the KWFI optical design. 
    more » « less